
Introduction to NoSQL



Lecture Plan

• Introductions
• What is NoSQL?
• Relational vs. NoSQL databases
• Aggregate data model
• Map-Reduce and Hadoop



Relational databases: strengths

• Persistence: large amounts of data can be safely and 
securely kept on storage device(s)
– ability to get small bits of information quickly and easily

• Concurrency: many applications may look at the same 
body of data at once, possibly modifying that data:
– RDBs handle concurrency by controlling the access to their 

data through transactions
– if an error occurs during the processing of changes, 

transactions can be rolled back
• Integration: several applications need to communicate 

and collaborate to solve a complex task:
– concurrency control automatically handles multiple 

applications



Relational databases: weaknesses
• Impedance mismatch: difference between the 

relational model and in-memory data structures
– RDBs organize data into structure of relations and 

tuples (tables and rows)
– values in a relational tuple have to be simple (i.e. no 

structures, such as nested records or lists)
– in-memory data structures can be more complex than 

simple relations
– as a result, in-memory data structures need to be 

translated into a relational representation in order to 
be stored on disk



Relational data model



Relational databases: major weakness

• RDBs are designed to be run on a single machine
• Sharding: RDBs could be run as separate servers for 

different sets of data
– sharding is controlled by an application, which keeps track 

of which RDB server to talk to for each bit of data
– …but querying, referential integrity, transactions and 

consistency control across shards still need to be 
implemented 



Why NoSQL?

• Relational DBMSs have been a successful technology for more than 

twenty years, since they provided reliable persistence, concurrency 

control and integration mechanisms

• RDBs are designed to run on a single machine and do not scale up 

horizontally

• However, the need to process large volumes of data led to a shift 

from scaling vertically to scaling horizontally on clusters

• Cluster: large number of commodity machines connected with a 

network



History of NoSQL

• Early efforts were focused on proprietary systems by 
Amazon and Google in 2000s:
– BigTable from Google
– Dynamo from Amazon

• The term “NoSQL” traces back to a meetup on June 
11, 2009 in San Francisco, after which NoSQL DBMs 
have become an open-source phenomenon





Relational DBs



KEY-VALUE STORES



Document Stores



Graph Databases



Wide Column Database



Types of NoSQL databases

• Key-value: BerkeleyDB, LevelDB, Memcached, Project 
Voldemort, Redis, Riak

• Document: OrientDB, RavenDB, Terrastore, CouchDB, 
MongoDB

• Column-family: Amazon SimpleDB, Cassandra, Hypertable, 
HBase

• Graph: FlockDB, HyperGraphDB, Infinite Graph, Neo4J



DB-Engines Ranking

https://db-engines.com/en/ranking



NoSQL: aggregate data model

• Explicit storage of a rich structure of closely related 
data that is accessed as a unit (called aggregates)

• Aggregates provide a natural unit of interaction for 
many applications

• Suitable for distributed environment
• Downside: difficulty in handling relationships 

between entities in different aggregates



Aggregate

• Complex record allowing lists and other record 
structures to be nested inside it

• Collection of related objects that are treated 
as a unit



Relational schema



Relational data model



Example of aggregates



Aggregate vs. relational data model
• No normalization:

– instead of using IDs, some records may be duplicated and 
copied with an aggregate

– minimize the number of aggregates we access during data 
interaction

– minimizing the number of nodes to query for data and data 
transfer overhead when gathering the data

• Relations between aggregates are still possible:
– e.g., between orders and customers
– aggregate boundaries are context-specific (i.e. depend on the 

task and how the data is manipulated by the application)
• Relational databases are aggregate-ignorant:

– and so are NoSQL graph databases



Relational vs. NoSQL DBs: atomicity
• RDBs allow to manipulate any combination of 

rows from any tables in a single ACID (Atomic, 
Consistent, Isolated and Durable) transaction:
– many rows spanning many tables are updated as a 

single atomic operation
– atomic operations succeed or fail entirely

• NoSQL databases support atomic manipulation of 
single aggregate at a time:
– cross-aggregate atomic operations need to be 

implemented programmatically
• Aggregate-ignorant NoSQL DBs support ACID 

transactions similar to relational DBs



CAP theorem



The CAP theorem

• Many database systems forgo transactions 
entirely, because the performance impact is 
too high

• MySQL was popular since it was lightweight 
and didn’t support transactions

• Consistency can and should often be relaxed







The CAP theorem



Choose DBs

https://www.dataversity.net/choose-right-nosql-
database-application/#



Map-Reduce and Hadoop



What is Hadoop?
• A software framework that supports data-intensive distributed

applications.

• It enables applications to work with thousands of nodes and petabytes of  
data.

• Hadoop was inspired by Google's MapReduce and Google File System  
(GFS).

• Hadoop is a top-level Apache project being built and used by a global
community of contributors, using the Java programming language.

• Yahoo! has been the largest contributor to the project, and uses Hadoop
extensively across its businesses.



Who uses Hadoop?

http://wiki.apache.org/hadoop/PoweredBy



Who uses Hadoop?

• Yahoo!
– More than 100,000 CPUs in >36,000 computers.

• Facebook
– Used in reporting/analytics and machine learning and also  

as storage engine for logs.
– A 1100-machine cluster with 8800 cores and about 12 PB

raw storage.
– A 300-machine cluster with 2400 cores and about 3 PB raw  

storage.
– Each (commodity) node has 8 cores and 12 TB of storage.



Very Large Storage Requirements

• Facebook has Hadoop clusters with 15 PB of raw storage 
(15,000,000 GB).

• No single storage can handle this amount of data.

• We need a large set of nodes each storing part of the data.



HDFS: Hadoop Distributed File System

1
2

1

2

1

2

3 3 3

Data Nodes

Namenode

Client

1. filename, index

2. Datanodes, Blockid

3. Read data



Terabyte Sort Benchmark

• http://sortbenchmark.org/
• Task: Sorting 100TB of data and writing results  

on disk (10^12 records each 100 bytes).

• Yahoo’s Hadoop Cluster is the current winner:
– 173 minutes
– 3452 nodes x (2 Quadcore Xeons, 8 GB RAM)

This is the first time that a Java program has won this competition.



Example: word count



Counting Words by MapReduce

Hello World  
Bye World  
Hello Hadoop
Goodbye Hadoop

Hello World
Bye World

Hello Hadoop  
Goodbye Hadoop

Split



Counting Words by MapReduce

Hello World
Bye World Mapper

Hello, <1>
World, <1>
Bye, <1>
World, <1>

Bye, <1>
Hello, <1>
World, <1, 1>

Sort & Merge

Bye, <1>
Hello, <1>
World, <2>

Combiner

Node 1



Counting Words by MapReduce

Sort & Merge

Bye, <1>
Hello, <1>
World, <2>

Goodbye, <1>
Hadoop, <2>
Hello, <1>

Bye, <1>
Goodbye, <1>
Hadoop, <2>
Hello, <1, 1>
World, <2>

Split

Bye, <1>
Goodbye, <1>
Hadoop, <2>

Hello, <1, 1>
World, <2>



Counting Words by MapReduce

Bye, <1>
Goodbye, <1>
Hadoop, <2>

Hello, <1, 1>
World, <2>

Reducer
Bye, <1>
Goodbye, <1>
Hadoop, <2>

Reducer Hello, <2>
World, <2>

Node 1

Node 2
Write on Disk

part-00000

Bye 1
Goodbye 1
Hadoop 2

Hello 2
World 2

part-00001



High Level Architecture of MapReduce

Master Node

JobTracker

Slave Node Slave Node Slave Node

TaskTracker TaskTracker TaskTracker

Client
Computer

Task Task Task TaskTask



High Level Architecture of Hadoop

Master Node

JobTracker

Slave Node

TaskTracker

MapReduce layer

HDFS layer

TaskTracker

NameNode

DataNode DataNode

Slave Node

TaskTracker

DataNode



Hadoop Job Scheduling

• FIFO queue matches incoming jobs to  
available nodes
– No notion of fairness
– Never switches out running job



Distributed File Cache

• The Distributed Cache facility allows you to  
transfer files from the distributed file system  
to the local file system (for reading only) of all  
participating nodes before the beginning of a  
job.



References

• Hadoop Project Page: 
http://hadoop.apache.org/


